Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces
نویسنده
چکیده
There are many approaches to conventional Euclidian scattering theory. In this exposition an essentially microlocal view is adopted. Apart from its intrinsic interest this is intended as preparation for later generalization, to more complicated geometric settings. In fact, the treatment given here extends beyond the usual confines of scattering theory in that the spectral and scattering theory, at least the elementary part, is covered for the Laplacian associated to a ‘scattering metric’ on any compact manifold with boundary. By a scattering metric on a compact manifold with boundary,X, we shall mean a Riemann metric on the interior of X which can be brought to the form
منابع مشابه
Scattering theory for graphs isomorphic to a homogeneous tree at infinity
We describe the spectral theory of the adjacency operator of a graph which is isomorphic to a regular tree at infinity. Using some combinatorics, we reduce the problem to a scattering problem for a finite rank perturbation of the adjacency operator on a regular tree. We develop this scattering theory using the classical recipes for Schrödinger operators in Euclidian spaces.
متن کاملResolvents and Martin Boundaries of Product Spaces
In this paper we examine the Laplacian on the product of two asymptotically hyperbolic spaces from the point of view of geometric scattering theory. In particular, we describe the asymptotic behavior of the resolvent applied to Schwartz functions and that of the resolvent kernel itself. We use these results to find the Martin boundary of the product space. This behaves (nearly) as expected when...
متن کاملAnalytic Continuation and High Energy Estimates for the Resolvent of the Laplacian on Forms on Asymptotically Hyperbolic Spaces
We prove the analytic continuation of the resolvent of the Laplacian on asymptotically hyperbolic spaces on differential forms, including high energy estimates in strips. This is achieved by placing the spectral family of the Laplacian within the framework developed, and applied to scalar problems, by the author recently, roughly by extending the problem across the boundary of the compactificat...
متن کاملGeometric Scattering Theory and Applications
Classical scattering theory, by which we mean the scattering of acoustic and electromagnetic waves and quantum particles, is a very old discipline with roots in mathematical physics. It has also become an important part of the modern theory of linear partial differential equations. Spectral geometry is a slightly more recent subject, the goal of which is to understand the connections between th...
متن کاملMicrolocal analysis of asymptotically hyperbolic spaces and high-energy resolvent estimates
In this paper we describe a new method for analyzing the Laplacian on asymptotically hyperbolic spaces, which was introduced by the author in 2010. This new method in particular constructs the analytic continuation of the resolvent for even metrics (in the sense of Guillarmou), and gives high-energy estimates in strips. The key idea is an extension across the boundary for a problem obtained fro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994